Calculating K–Th–U abundances from ²¹Ne and ³⁹Ar nucleonic production in the crust and mantle

Lauren Stevens,¹ Ondřej Šrámek,² Sujoy Mukhopadhyay,³ William F. McDonough²

1 University of Maryland, Department of Chemistry and Biochemistry; 2 University of Maryland, Department of Geology; 3 Harvard University, Department of Earth and Planetary

Sciences

stevens.lauren@gmail.com; sramek@umd.edu, http://anquetil.colorado.edu/~sramek

mantle.

Rationale

Argon detectors for WIMP dark matter searches (i.e., DEAP, DAR-WIN, ArDM, WARP, DarkSide) require low-radioactivity argon (i.e., low ³⁹Ar), and there is ongoing effort in the experimental particle physics community to measure ³⁹Ar in underground gas sources [1]. These new measurements - in concert with predictions based on abundance of U, Th, K, and other elements - can be used to constraint the amount of radioactivity in the crust and shallow mantle.

Table 1: α -particle and ⁴⁰Ar production rate (# atoms per second per kg of rock) calculated for selected rock compositions.

Compositional estimate	Elem. abun.		α prod. rate			⁴⁰ Ar prod.	
	Th	U	K	²³² Th	^{238}U	Th+U	
Continental Crust	pp	m	%	k	(g ⁻¹ s	-1	kg ⁻¹ s ⁻¹
R&G [2] – Upper CC	10.5	2.7	2.3	260	270	533	77
R&G [2] – Middle CC	6.5	1.3	1.9	160	128	290	64
R&G [2] – Lower CC	1.2	0.2	0.51	29	20	50	17
Shallow mantle (DMM)	pp	b	ppm	k	(g ⁻¹ s	-1	$kg^{-1}s^{-1}$
Workman and Hart [3]	7.9	3.2	50	0.19	0.32	0.52	0.17
Salters and Stracke [4]	13.7	4.7	60	0.33	0.46	0.82	0.20
Arevalo & McD [5]	46	12	152	1.1	1.2	2.4	0.51

Table 2: Neutron production rate (per year per kg of rock) evaluated according to Ballentine and Burnard [6] for selected rock compositions

Compositional estimate	(n, p)	fission
	Th U	²³⁸ U
Continental Crust	$kg^{-1}yr^{-1}$	$kg^{-1}yr^{-1}$
Rudnick and Gao [2] - Upper	5900 3300	1300
Rudnick and Gao [2] - Middle	3700 1600	620
Rudnick and Gao [2] - Lower	710 260	95

Next steps:

- Calculate ³⁹Ar production by ³⁹K(n, p)³⁹Ar.
- Calculate ²¹Ne production [$^{18}O(\alpha, n)^{21}Ne$].

• The isotopic signature of the deep well gas – ³⁹Ar/⁴⁰Ar, ⁴⁰Ar/²¹Ne, ²¹Ne/⁴He – depends on the source rock composition.

- ³⁹Ar production rate proportional to abundances of $K \times (U+Th)$
- ⁴⁰Ar production rate proportional to K abundance but not U, Th
- ²¹Ne, ⁴He production proportional to U+Th abundance

References

[1] Xu, J., et al., A study of the residual ³⁹Ar content in argon from underground sources, 2012, arXiv:1204.6011v1

- [2] Rudnick, R. L. and S. Gao, Composition of the continental crust, in R. L. Rudnick, editor, The Crust, volume 3 of Treatise on Geoch chapter 3.01, pages 1–64. Elsevier Scientific Publishing Company, Oxford, 2003. doi:10.1016/BD-08-043751-6/03016-4. editors-in Chapter 3.01, pages 1–64, Els D. Holland and K. K. Turekian
- [3] Workman, R. K. and S. R. Hart, Major and trace element composition of the depleted MORB mantle (DMM), Earth Planet. Sci. Lett 231(1-2):53-72, 2005. doi:10.1016/j.epsl.2004.12.005.
- [4] Salters, V. J. M. and A. Stracke, Composition of the depleted mantle, Geochem. Geophys. Geosyst., 5(5):Q05B07, 2004, do 10.1029/2003GC000597.
- [5] Arevalo, R., Jr and W. F. McDonough, Chemical variations and regional diversity observed in MORB, Chem. Geol., 271(1-2):70–85, 2010 doi:10.1016/i.chemose.2009.12.013.

[6] Ballentine, C. J. and P. G. Burnard, Production, release and transport of noble gases in the continental crust, Rev. Mineral. Geochem. 47(1):481-538, 2002, doi:10.2138/rmg.2002.47.12.