Geoneutrino Fluxes From A Laterally Heterogeneous Lower Mantle: Constraints From Geophysics And Geochemistry

Ondřej Šrámek 1 , William F. McDonough 1 , Stephen T. Dye 2,3 and Shijie Zhong 4

1 University of Maryland, Department of Geology; 2 Hawaii Pacific University; 3 University of Hawaii; 4 University of Colorado at Boulder, Department of Physics

sramek@umd.edu ; anquetil.colorado.edu/~sramek

1. Summary

- Knowledge of the amount and spatial distribution of heat producing elements (HPEs) in the Earth's interior is crucial for understanding Earth's energetics.
- Compositional estimates for the average silicate (non-metallic) part of Earth's interior show a variability of up to a factor of 3.
- Recent advances in experimental neutrino physics led to detection of geoneutrinos, electron-anti-neutrinos emitted in naturally occurring radionuclides' decay chains, which provide a direct measurement of Earth's internal radioactivity.
- We present a new analysis of predicted geoneutrino signal from the Earth's mantle for several established compositional estimates of Earth's geochemical reservoirs.
- We illustrate the surface variation of mantle geoneutrino flux using simple conceptual models of the deep mantle structure as well as a seismic tomography-based picture or Earth's interior.
- We relate the flux predictions to existing geoneutrino detections and proposed future geoneutrino experiment sites.

2. Geoneutrino flux calculations

Decay chains of naturally occurring radionuclides 238 U, 235 U, 232 Th and 40 K produce electron anti-neutrinos ($\bar{\nu}_e$) and heat Earth's interior:

$$\begin{array}{rcl} & 238 \mathsf{U} & \longrightarrow & ^{206}\mathsf{Pb} + 8\alpha + 6e^- + 6\bar{\nu}_e + 51.7 \,\mathsf{MeV} \\ & & ^{235}\mathsf{U} & \longrightarrow & ^{207}\mathsf{Pb} + 7\alpha + 4e^- + 4\bar{\nu}_e + 46.4 \,\mathsf{MeV} \\ & & ^{232}\mathsf{Th} & \longrightarrow & ^{208}\mathsf{Pb} + 6\alpha + 4e^- + 4\bar{\nu}_e + 42.7 \,\mathsf{MeV} \\ & & ^{40}\mathsf{K} & \stackrel{89.28\%}{\longrightarrow} & ^{40}\mathsf{Ca} + e^- + \bar{\nu}_e + 1.311 \,\mathsf{MeV} \\ & & ^{40}\mathsf{K} + e^- & \frac{10.72\%}{\longrightarrow} & ^{40}\mathsf{Ar} + \nu_e + 1.505 \,\mathsf{MeV} \end{array}$$

The anti-neutrino flux $\Phi_X(\mathbf{r})$ at position \mathbf{r} from a radionuclide X distributed in a spatial domain Ω is calculated from [e.g., 1]:

$$\Phi_X(\mathbf{r}) = \frac{n_X \lambda_X \langle P \rangle}{4\pi} \int\limits_{\Omega} \frac{a_X(\mathbf{r}') \rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^2} \mathrm{d}\mathbf{r}'$$

- n_X is the number of anti-neutrinos per decay chain
- λ_X is the decay constant (1/lifetime)
- a_X is the abundance of radioactive isotope (# rad. isotope atoms per kg of rock)

 $a_X =$

- ρ is rock density
- $\langle P\rangle$ is the average survival probability; assumes a signal source region size much larger than the neutrino oscillation length (60–110 km depending on anti-neutrino energy)

$$\frac{A_X X_X}{M_X},$$

• A_X is the elemental abundance (kg of element per kg of rock)

• $X_{\boldsymbol{X}}$ is the isotopic ratio (atoms of radionuclide per atoms of element)

• M_X is atomic mass

Estimates of HPE abundances and spatial distribution in Earth's interior \longrightarrow calculate the predicted geo- $\bar{\nu}_e$ flux at the surface

3. Geoneutrino detection

Some of the geoneutrinos (from ²³⁸U and ²³²Th) are now detectable. • 2 experiments reported measurements – KamLAND in Japan and

- Borexino in Italy
- SNO+ in Ontario, Canada will go on-line in 2012
- proposed detectors LENA (Finland or France), HanoHano (Hawaii)

2011 AGU Fall Meeting, 5-9 December, Moscone Convention Center, San Francisco, California, USA

Predictions of geoneutrino signal for various compositional estimates can be compared to measurements. Ultimate goal is to experimentally constrain the abundance/distribution of HPEs in Earth's interior.

4. Composition estimates, mass balance

Geochemical reservoirs: BSE = bulk silicate Earth; CC = bulk continental crust; BM = bulk mantle; DM = depleted MORB mantle; EM = enriched mantle

Composition estimates of Earth's geochemical reservoirs

		BSE		CC		DM	
	Jetal	Aetal	T&S	R&G	W&H	S&S	A&McD
A_U in ppb	12	20	31	1300	3.2	4.7	8
A_{Th} in ppb	42.7	80	124	5600	7.9	13.7	22
A_K in ppm	129	276	310	17000†	50	60	152
Th/U	3.6	4	4.0	4.3	2.5	2.9	2.8
K/U	10750	13800	10000	13000†	15600	12800	19000
Power in TW	11.0	20.2	29.6	7.2	2.8*	4.1*	7.5*

• J et al = Javov et al. [2] - E-chondrite based

(1)

(2)

(3)

A et al = Arevalo et al. [3] — CI-chondrite based, modified from McDonough and Sun [4]
 T&S = Turcotte and Schubert [5] — based on energetics of mantle convection
 R&G = Rudnick and Gao [6]; we assume crustal composition to be relatively well-known
 W&H = Workman and Hart [7]

S&S = Salters and Stracke [8]
 A&McD = Arevalo Jr. and McDonough [9]
Bulk mantle composition from:

" BSE = CC + BM "

Geochemistry usually requires an enriched, possibly "hidden", deep-mantle reservoir:

" BM = DM + EM " or " BSE = CC + DM + EM "

Trade-off between the size (mass fraction F^{EM} of the total mantle) of enriched reservoir and the enrichment factor E (EM/DM composition ratio):

$A_X^{BM} = A_X^{DM} [1 + (E_X - 1)F^{EM}].$	(4)
--	-----

5. Cartoon models of HPE distribution, calculated flux

Schematic representation of ULVZ, LLSVPs (piles/superplumes)

Geo- $\bar{\nu}_e$ flux for axially symmetric cases (P1, P2)

• P1: variation of 49%; P2: variation of 27%

6. Flux for seismic tomo-based enriched reservoir geometry

S20RTS shear-wave speed anomaly [10]

Consider: slow V_S (< -0.25% below 1500 km) \Rightarrow enriched material

Calculated mantle geoneutrino flux from ²³⁸U + ²³²Th

• surface-averaged flux very close to case EL

43% flux variation

U41A-0004

• 2 flux maxima related to the African and Pacific deep mantle piles

 KamLAND measurement consistent with all 3 BSE composition estimates.

• Borexino measurement only supports T&S BSE (at 1σ level)

• strong crustal signal at KamLAND, Borexino, SNO+, LENA

8. Conclusions

- Geochemistry (composition estimates) + geophysics (constraints on mantle structure) + experimental particle physics (geoneutrino measurements) → toward better knowledge of Earth's radiogenic heat.
 In order to discriminate between different BSE compositional models, we need to measure mantle geoneutrinos with ≤ 20% uncertainty.
- This has not been accomplished to date, but improved statistics at operational detectors and future experiments may achieve this goal.
 An oceanic-site detector is highly desirable.

References

- Fiorentini, G., M. Lissia, and F. Mantovani, Geo-neutrinos and earth's interior, *Phys. Rep.*, 453(5-6):117-172, 2007, doi: 10.1016/j.https:rep2007.09.001.
 Jacoy, M., et al., The chemical composition of the Earth: Enstable chendrite models, *Earth Planet. Sci. Lett.*, 293(3-4):259-258, 2010, doi:10.1016/j.ena/2010.02.031
- doi:10.1016/j.epsl.2010.02.033.
 (3) Arevala, R., Jr., W. F. McDonough, and M. Luong, The K/U ratio of the silicate Earth: Insights into mantle composition, structure and therma evolution, Earth Planet, Sci. Lett. **278**(3-4):361–369, 2009, doi:10.1016/j.epsl.2008.12.023.
- McDonough, W. F. and S. Sun, The composition of the Earth, Chem. Geol. 120(3-4):223–253, 1995, doi:10.1016/0009-2541(94)00140-4.
 [5] Turotte, D. L. and G. Schubert, Geodynamics, Applications of Continuum Physics to Geological Problems, Cambridge University Press, second edition, 2002.
- [6] Budnick, R. L. and S. Gao, Composition of the continential crust, in H. D. Holland and K. K. Turekian, editors, *The Crust volume 3 of Treatise on Geochemistry*, chapter 301, pages 1–46, Elsevier Scientific Publishing Company, Oxford, 200, doi:10.1016/jeg.2004.043751-003016-4. JV Workman, R. K. and S. H. Hart, Major and trace element composition of the depleted MORB manile (DMM), *Earth Planet. Sci. Lett.*, **231**(1-2):53-72, 2005, doi:10.1016/jeg.2004.12004.12005.
- [8] Saliers, V. J. M. and A. Stracke, Composition of the depleted manife, Geochem. Geophys. Geosyst., 5(5):Q05B07, 2004, doi: 10.1029/2003GC000597.
- Arevalo Jr. R. and W. F. McDonough. Chemical variations and regional diversity observed in MORB, Chem. Geol. 271(1-2):70–85, 2010, doi:10.1016/j.chemgac.2001.2013.
 Britsema, J. H. J. van Heijst, and J. H. Woodhouse. Complex shear was velocity structure imaged beneath Africa and loeland, Science, 2886(546):1925–1928. 1990, doi:10.1125/science.285.6446 1925.
- 2001/04/00.1925-1926, 1999, 00:10.1125/science.286.5446.1925. [11] Dye, S. T., 2011, personal communication.