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1. Earth Structure And Present-Day Energy Budget

Earth loses heat at a rate of 46±3 TW [1],
which includes heating by long-lived radioactivity (238U, 232Th, 40K),

and primordial heat remnant after accretion and core–mantle differentiation.
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Radioactivity in the highly enriched crust accounts for 8±1 TW [2].

Most likely no U or Th in the core.

Average mantle abundances implied by different estimates of silicate Earth bulk
composition account for 1 to 28 TW of radiogenic heating [3]:

“Cosmochemical” mantle: 3±2 TW
“Geochemical” mantle: 12±4 TW
“Geophysical” mantle: 25±3 TW

Compositional estimates for shallow mantle, based on analysis of basalts
erupted at mid-oceanic ridges, suggest heterogeneity in mantle composition for

some average mantle estimates.
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We use three shallow mantle compositional estimates,
“low”, “medium” and “high” in terms of U+Th abundances [3].

Fundamental unanswered questions:
•How much radioactivity is there in Earth’s mantle?

OR more broadly: What is Earth made of?
•How is mantle radioactivity spatially distributed?

Is the mantle compositionally uniform? layered? 3-D composi-
tional structures?

Crucial for understanding the power available for mantle convection
& plate tectonics, Earth’s thermal history, planetary accretion.

2. Geoneutrinos

Electron anti-neutrinos emitted in �-decays of natural radionuclides.

The higher energy geoneutrinos from 238U and 232Th decay chains detectable
using inverse beta decay reaction: direct assessment of mantle radioactivity!

To-date detections: KamLAND [4, 5] & Borexino [6]

Combined analysis assuming site-independent mantle flux yields mantle signal of
23±10 TNU [7]

3. Seismic Image of the Mantle

Shear-wave seismic speed anomaly
relative to a spherically symmetric seismic speed model

(seismic model S20RTS [8], figure from [9])

Two anomalous structures in deep mantle,
below Pacific and below Africa

can reflect temperature anomaly and/or compositional difference

4. Geoneutrino Flux Predictions (238U + 232Th)

Assumption: seismically imaged deep-mantle structures (section 3) can be
compositionally distinct from ambient mantle.

Concentrations of U & Th calculated from available estimates for average mantle
and shallow mantle (section 1).

Result for “geochemical mantle” and “medium U+Th” shallow mantle:
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5. Detectability of Mantle Flux
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Two detection sites in Pacific basin proposed to benefit from:
• high mantle-to-crust signal ratio

• large lateral variation of predicted flux
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Summary

•Model of geoneutrino emission from Earth’s mantle, constrained
by geophysics and geochemistry.

•Plausible compositional estimates result in mantle flux patterns
ranging from low-amplitude spatially uniform to high-amplitude lat-
erally variable.

•Predicted lateral variation in mantle flux is resolvable for “geophys-
ical” mantle and the high-abundance end of “geochemical” mantle
by a two-site measurement in the Pacific.
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